Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Hydrothermal synthesis and humidity sensing property of ZnO nanostructures and ZnO-In(OH)3 nanocomposites

Identifieur interne : 001A56 ( Main/Repository ); précédent : 001A55; suivant : 001A57

Hydrothermal synthesis and humidity sensing property of ZnO nanostructures and ZnO-In(OH)3 nanocomposites

Auteurs : RBID : Pascal:12-0306619

Descripteurs français

English descriptors

Abstract

Prism- and raspberry-like ZnO nanoparticles and ZnO-In(OH)3 nanocomposites were prepared by template free hydrothermal method. XRD investigations and microscopic studies showed that pill-like In(OH)3 particles with body-centered cubic crystal structure formed on the surface of ZnO nanoparticles resulting in increased specific surface area. TEM-EDX mapping images demonstrated that not only nanocomposite formation took place in the course of the synthesis, but zinc ions were also built into the crystal lattice of the ln(OH)3. However, only undoped In(OH)3 was found on the surface of the pill-like particle aggregates by XPS analyses. The raspberry- and prism-like ZnO particles exhibit strong visible emission with a maximum at 585 and 595 nm, respectively, whose intensity significantly increase due to nanocomposite formation. Photoelectric investigations revealed that photocurrent intensity decreased with increasing indium ion concentration during UV light excitation, which was explained by increase in visible fluorescence emission. QCM measurements showed that morphology of ZnO and concentration of In(OH)3 had an influence on the water vapor sensing properties.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0306619

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Hydrothermal synthesis and humidity sensing property of ZnO nanostructures and ZnO-In(OH)
<sub>3</sub>
nanocomposites</title>
<author>
<name sortKey="Pal, Edit" uniqKey="Pal E">Edit Pal</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>University of Bremen, Faculty of Production Engineering, FB 04, Near Net Shape Technologies, Wiener Str. 12</s1>
<s2>28359 Bremen</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Brême (Land)</region>
<settlement type="city">Brême</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hornok, Vikt Ria" uniqKey="Hornok V">Vikt Ria Hornok</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Supramolecular and Nanostructured Materials Research Group of the Hungarian Academy of Sciences, Aradi vt. 1</s1>
<s2>6720 Szeged</s2>
<s3>HUN</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Hongrie</country>
<wicri:noRegion>6720 Szeged</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kun, Robert" uniqKey="Kun R">Robert Kun</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>University of Bremen, Faculty of Production Engineering, FB 04, Near Net Shape Technologies, Wiener Str. 12</s1>
<s2>28359 Bremen</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Brême (Land)</region>
<settlement type="city">Brême</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Oszko, Albert" uniqKey="Oszko A">Albert Oszko</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Physical Chemistry and Material Science, University of Szeged, Aradi vt. 1</s1>
<s2>6720 Szeged</s2>
<s3>HUN</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Hongrie</country>
<wicri:noRegion>6720 Szeged</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Seemann, Torben" uniqKey="Seemann T">Torben Seemann</name>
<affiliation wicri:level="3">
<inist:fA14 i1="04">
<s1>Fraunhofer Institute for Manufacturing Technology and Advanced Materials Research (IFAM), Wiener Str. 12</s1>
<s2>28359 Bremen</s2>
<s3>DEU</s3>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Brême (Land)</region>
<settlement type="city">Brême</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dekany, Imre" uniqKey="Dekany I">Imre Dekany</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Supramolecular and Nanostructured Materials Research Group of the Hungarian Academy of Sciences, Aradi vt. 1</s1>
<s2>6720 Szeged</s2>
<s3>HUN</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Hongrie</country>
<wicri:noRegion>6720 Szeged</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Busse, Matthias" uniqKey="Busse M">Matthias Busse</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>University of Bremen, Faculty of Production Engineering, FB 04, Near Net Shape Technologies, Wiener Str. 12</s1>
<s2>28359 Bremen</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Brême (Land)</region>
<settlement type="city">Brême</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<inist:fA14 i1="04">
<s1>Fraunhofer Institute for Manufacturing Technology and Advanced Materials Research (IFAM), Wiener Str. 12</s1>
<s2>28359 Bremen</s2>
<s3>DEU</s3>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Brême (Land)</region>
<settlement type="city">Brême</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0306619</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0306619 INIST</idno>
<idno type="RBID">Pascal:12-0306619</idno>
<idno type="wicri:Area/Main/Corpus">001A54</idno>
<idno type="wicri:Area/Main/Repository">001A56</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0021-9797</idno>
<title level="j" type="abbreviated">J. colloid interface sci.</title>
<title level="j" type="main">Journal of colloid and interface science</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aggregate</term>
<term>Cubic crystals</term>
<term>Fluorescence</term>
<term>Humidity</term>
<term>Hydrothermal condition</term>
<term>Indium hydroxide</term>
<term>Indium ion</term>
<term>Morphology</term>
<term>Nanocomposite</term>
<term>Nanoparticle</term>
<term>Nanostructure</term>
<term>Particle</term>
<term>Photoelectron spectrometry</term>
<term>Photoluminescence</term>
<term>Structure</term>
<term>Surface area</term>
<term>Synthesis</term>
<term>Template</term>
<term>Transition element compounds</term>
<term>Transmission electron microscopy</term>
<term>Water vapor</term>
<term>X ray</term>
<term>X ray diffraction</term>
<term>Zinc ion</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Condition hydrothermale</term>
<term>Synthèse</term>
<term>Humidité</term>
<term>Composé de métal de transition</term>
<term>Nanostructure</term>
<term>Nanocomposite</term>
<term>Nanoparticule</term>
<term>Hydroxyde d'indium</term>
<term>Photoluminescence</term>
<term>Vapeur eau</term>
<term>Diffraction RX</term>
<term>Particule</term>
<term>Cristal cubique</term>
<term>Structure</term>
<term>Aire superficielle</term>
<term>Microscopie électronique transmission</term>
<term>Ion zinc</term>
<term>Agrégat</term>
<term>Spectrométrie photoélectron</term>
<term>Rayon X</term>
<term>Ion indium</term>
<term>Fluorescence</term>
<term>Morphologie</term>
<term>ZnO</term>
<term>O Zn</term>
<term>Agent structurant</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Prism- and raspberry-like ZnO nanoparticles and ZnO-In(OH)
<sub>3</sub>
nanocomposites were prepared by template free hydrothermal method. XRD investigations and microscopic studies showed that pill-like In(OH)
<sub>3</sub>
particles with body-centered cubic crystal structure formed on the surface of ZnO nanoparticles resulting in increased specific surface area. TEM-EDX mapping images demonstrated that not only nanocomposite formation took place in the course of the synthesis, but zinc ions were also built into the crystal lattice of the ln(OH)
<sub>3</sub>
. However, only undoped In(OH)
<sub>3</sub>
was found on the surface of the pill-like particle aggregates by XPS analyses. The raspberry- and prism-like ZnO particles exhibit strong visible emission with a maximum at 585 and 595 nm, respectively, whose intensity significantly increase due to nanocomposite formation. Photoelectric investigations revealed that photocurrent intensity decreased with increasing indium ion concentration during UV light excitation, which was explained by increase in visible fluorescence emission. QCM measurements showed that morphology of ZnO and concentration of In(OH)
<sub>3</sub>
had an influence on the water vapor sensing properties.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0021-9797</s0>
</fA01>
<fA02 i1="01">
<s0>JCISA5</s0>
</fA02>
<fA03 i2="1">
<s0>J. colloid interface sci.</s0>
</fA03>
<fA05>
<s2>378</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Hydrothermal synthesis and humidity sensing property of ZnO nanostructures and ZnO-In(OH)
<sub>3</sub>
nanocomposites</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>PAL (Edit)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HORNOK (Viktória)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KUN (Robert)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>OSZKO (Albert)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>SEEMANN (Torben)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>DEKANY (Imre)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>BUSSE (Matthias)</s1>
</fA11>
<fA14 i1="01">
<s1>University of Bremen, Faculty of Production Engineering, FB 04, Near Net Shape Technologies, Wiener Str. 12</s1>
<s2>28359 Bremen</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Supramolecular and Nanostructured Materials Research Group of the Hungarian Academy of Sciences, Aradi vt. 1</s1>
<s2>6720 Szeged</s2>
<s3>HUN</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Physical Chemistry and Material Science, University of Szeged, Aradi vt. 1</s1>
<s2>6720 Szeged</s2>
<s3>HUN</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Fraunhofer Institute for Manufacturing Technology and Advanced Materials Research (IFAM), Wiener Str. 12</s1>
<s2>28359 Bremen</s2>
<s3>DEU</s3>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA20>
<s1>100-109</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>4124</s2>
<s5>354000500830220140</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>55 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0306619</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of colloid and interface science</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Prism- and raspberry-like ZnO nanoparticles and ZnO-In(OH)
<sub>3</sub>
nanocomposites were prepared by template free hydrothermal method. XRD investigations and microscopic studies showed that pill-like In(OH)
<sub>3</sub>
particles with body-centered cubic crystal structure formed on the surface of ZnO nanoparticles resulting in increased specific surface area. TEM-EDX mapping images demonstrated that not only nanocomposite formation took place in the course of the synthesis, but zinc ions were also built into the crystal lattice of the ln(OH)
<sub>3</sub>
. However, only undoped In(OH)
<sub>3</sub>
was found on the surface of the pill-like particle aggregates by XPS analyses. The raspberry- and prism-like ZnO particles exhibit strong visible emission with a maximum at 585 and 595 nm, respectively, whose intensity significantly increase due to nanocomposite formation. Photoelectric investigations revealed that photocurrent intensity decreased with increasing indium ion concentration during UV light excitation, which was explained by increase in visible fluorescence emission. QCM measurements showed that morphology of ZnO and concentration of In(OH)
<sub>3</sub>
had an influence on the water vapor sensing properties.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001C01J02</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Condition hydrothermale</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Hydrothermal condition</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Condición hidrotermal</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Synthèse</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Synthesis</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Síntesis</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Humidité</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Humidity</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Humedad</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Composé de métal de transition</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Transition element compounds</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Nanostructure</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Nanostructure</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Nanoestructura</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Nanocomposite</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Nanocomposite</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Nanocompuesto</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Nanoparticule</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Nanoparticle</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Nanopartícula</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Hydroxyde d'indium</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Indium hydroxide</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Indio hidróxido</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Photoluminescence</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Photoluminescence</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Fotoluminiscencia</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Vapeur eau</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Water vapor</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Vapor agua</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Diffraction RX</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>X ray diffraction</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Difracción RX</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Particule</s0>
<s2>FX</s2>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Particle</s0>
<s2>FX</s2>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Partícula</s0>
<s2>FX</s2>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Cristal cubique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Cubic crystals</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Cristal cúbico</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Structure</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Structure</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Estructura</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Aire superficielle</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Surface area</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Area superficial</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Microscopie électronique transmission</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Transmission electron microscopy</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Microscopía electrónica transmisión</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Ion zinc</s0>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Zinc ion</s0>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Zinc ión</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Agrégat</s0>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Aggregate</s0>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Agregado</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Spectrométrie photoélectron</s0>
<s5>20</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Photoelectron spectrometry</s0>
<s5>20</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Espectrometría fotoelectrón</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Rayon X</s0>
<s5>21</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>X ray</s0>
<s5>21</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Rayos X</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Ion indium</s0>
<s5>22</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Indium ion</s0>
<s5>22</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Indio ión</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Fluorescence</s0>
<s5>23</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Fluorescence</s0>
<s5>23</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Fluorescencia</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Morphologie</s0>
<s5>24</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Morphology</s0>
<s5>24</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Morfología</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>ZnO</s0>
<s4>INC</s4>
<s5>32</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>O Zn</s0>
<s4>INC</s4>
<s5>33</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Agent structurant</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Template</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Composé binaire</s0>
<s5>11</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Binary compound</s0>
<s5>11</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Compuesto binario</s0>
<s5>11</s5>
</fC07>
<fN21>
<s1>233</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A56 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001A56 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0306619
   |texte=   Hydrothermal synthesis and humidity sensing property of ZnO nanostructures and ZnO-In(OH)3 nanocomposites
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024